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Abstract

For any plane crack in an infinite isotropic elastic body subjected to some constant loading, Bueckner–Rice’s weight

function theory gives the variation of the stress intensity factors due to a small coplanar perturbation of the crack front.

This variation involves the initial SIF, some geometry independent quantities and an integral extended over the front,

the ‘‘fundamental kernel’’ of which is linked to the weight functions and thus depends on the geometry considered. The

aim of this paper is to determine this fundamental kernel for the tunnel-crack. The component of this kernel linked to

purely tensile loadings has been obtained by Leblond et al. [Int. J. Solids Struct. 33 (1996) 1995]; hence only shear

loadings are considered here. The method consists in applying Bueckner–Rice’s formula to some point-force loadings

and special perturbations of the crack front which preserve the crack shape while modifying its size and orientation.

This procedure yields integrodifferential equations on the components of the fundamental kernel. A Fourier transform

in the direction of the crack front then yields ordinary differential equations, that are solved numerically prior to final

Fourier inversion.
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1. Introduction

Consider a plane crack embedded in an infinite isotropic elastic solid subjected to some arbitrary,
constant loading. Eq. (1) of Part I gives the variation of the SIF resulting from any small, in-plane per-
turbation of the crack front. This equation notably involves an integral extended over the front. As will be
detailed below, the ‘‘fundamental kernel’’ Z in this integral is linked to the weight functions of the crack, i.e.
to the SIF induced on the crack front by unit point forces exerted on the crack lips, in the limit when the
points of application of these forces get infinitely close to the crack front. Therefore, it depends upon the
entire geometry of the crack. It can be deduced for instance from the works of Bueckner (1987) or Meade
and Keer (1984) on weight functions for a half-plane crack, from those of Kassir and Sih (1975), Tada et al.
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(1973) and Stallybrass (1981) for a circular connection and from that of Bueckner (1987) for a penny-
shaped crack. This has been done by Rice (1985) and Gao and Rice (1986) for a half-plane crack, by Gao
and Rice (1987a) for a circular connection and by Gao and Rice (1987b) and Gao (1988) for a penny-
shaped crack. The weight functions and the fundamental kernel are also known for an interface half-plane
crack (Lazarus and Leblond, 1998). For the tunnel-crack, the component Z11 linked to tensile loadings has
been derived by Leblond et al. (1996). The aim of Part II of this work is to derive the other components Zmn,
m; n ¼ 2; 3 linked to shear loadings. 1
The method used is based on both works of Leblond et al. (1996) and Lazarus and Leblond (1998). It is

of ‘‘special’’ rather than ‘‘general’’ nature in the terminology employed by Bueckner (1987). This means
that it avoids the calculation of the entire solution of the elasticity problems implied, but concentrates
instead on the sole feature of interest, namely the distribution of the SIF along the crack front. Considering
the complexity of the equations obtained even with such a ‘‘reduction’’, one may reasonably conjecture that
any ‘‘general’’ method of solution would be intractable.
The principle of our method is to apply Eq. (1) of Part I to some special loadings and perturbations of

the front. The loadings considered consist of point forces applied close to the crack front, so that the SIF
prior to the perturbation are just components of the fundamental kernel Z. The perturbations envisaged
consist of a small translation of the rear part of the front and a small rotation of both parts about an axis
normal to the crack plane. Since the shape of the crack is preserved in these transformations, the new SIF
are still connected to Z. One thus obtains integrodifferential equations on the components of Z which can
be solved through Fourier transform along the direction of the crack front.
The paper is organized as follows. Necessary elements from Part I are recalled in Section 2 for com-

pleteness. The integrodifferential equations on the components of Z are presented in Section 3. The Fourier
transform of these equations in the direction of the crack front yields second order ordinary differential
equations, duly completed by suitable ‘‘initial’’ conditions. This complete system of equations is presented
in Section 4, and the necessary subsequent Fourier inversion is sketched in Section 5. As could be forecast
in view of the complexity of the problem, this system does not have any simple analytical solution and must
be solved numerically. The numerical procedure and results are presented in the final Section 6.

2. Preliminaries

2.1. Elements of Part I

For ease of reference, indispensable elements of Part I are briefly recalled here.
For the tunnel-crack of width 2a, the fundamental kernel Z, which depends a priori on three parameters,

a, z, z0, can be expressed in terms of two operators f and g depending only on one parameter through the
following relations:

Zða; zþ; z0þÞ ¼ Zða; z�; z0�Þ � fððz0 � zÞ=aÞ
ðz0 � zÞ2

ð1Þ

Zða; zþ; z0�Þ ¼ Zða; z�; z0þÞ � gððz0 � zÞ=aÞ
a2

ð2Þ

Moreover, the following relations hold:

1 As will be seen, all other remaining components are zero.
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f12 ¼ f21 ¼ f13 ¼ f31 ¼ g12 ¼ g21 ¼ g13 ¼ g31 � 0 ð3Þ

f32 ¼ �ð1� mÞf23; g32 ¼ �ð1� mÞg23 ð4Þ

Hence, the determination of the fundamental kernel is reduced to that of eight scalar functions of one
variable: f11, f22, f33, f23, g11, g22, g33, g23.
The functions f11 and g11 pertaining to mode 1 loadings have been calculated by Leblond et al. (1996).

The aim of this work is to determine the six other functions, pertaining to shear mode 2þ 3 loadings.
Among them, f22, f33, g22, g33 are even and f23, g23 odd functions.
Our starting point is Eq. (1) of Part I, which takes the form (10) and (11) for dK2 and dK3 in the case of a

tunnel-crack. In a compact form more suitable here, these equations read:

dKmðzþÞ ¼ ½dKmðzþÞ	daðz0
Þ�daðzþÞ þ NmnKnðzþÞ
dda
dz

ðzþÞ þ PV
Z þ1

�1
fmn

z0 � z
a

� �
Knðz0þÞ

daðz0þÞ � daðzþÞ
ðz0 � zÞ2

dz0

þ
Z þ1

�1
gmn

z0 � z
a

� �
Knðz0�Þ

daðz0�Þ � daðzþÞ
a2

dz0; m; n ¼ 2; 3 ð5Þ

where Einstein’s implicit convention is used for the index n and

N23 ¼ � 2

2� m
; N32 ¼

2ð1� mÞ
2� m

ð6Þ

m denoting Poisson’s ratio and other components of N being zero. The values of the dKmðz�Þ for a point
M�ðz�Þ belonging to the line ðx ¼ �aÞ are given by the same expression with the obvious substitutions
zþ ! z�, z0
 ! z0
.

2.2. Relations between functions fmn, gmn and crack-face weight functions

Let kmiða; z
; x0; z0Þ (m ¼ 1; 2; 3, i ¼ x; y; z) denote the mth SIF generated at the point z
 of the front of a
tunnel-crack of width 2a by unit point forces 
~eei exerted on the points ðx0; 0
; z0Þ of the crack faces. Leblond
et al. (1999) have shown that the fundamental kernel Z is linked to these crack-face weight functions by the
following formula:

Zmnða; z
; z0

Þ ¼ Dniðz0


Þkmiða; z
; z0

Þ ð7Þ

where Einstein’s implicit summation convention is employed for the index i. In this equation,

kmiða; z
; z0
þ Þ � lim

x0!a

kmiða; z
; x0; z0Þffiffiffiffiffiffiffiffiffiffiffiffi
a� x0

p ; kmiða; z
; z0
�Þ � lim

x0!�a

kmiða; z
; x0; z0Þffiffiffiffiffiffiffiffiffiffiffiffi
aþ x0

p ð8Þ

and the coefficients Dniðz0

Þ depend on the orientation of the local set of axes chosen to define the SIF (see

Leblond et al., 1999). One verifies that for the choice made in Part I (set of axes ðx; y; zÞ for the line ðx ¼ aÞ
and set of axes ð�x;�y; zÞ for the line ðx ¼ �aÞ),

D1yðz0
þÞ ¼ D2xðz0

þÞ ¼ D3zðz0
þ Þ ¼

ffiffiffiffiffiffi
2p

p

4
;

D1yðz0
�Þ ¼ D2xðz0

�Þ ¼ �D3zðz0
� Þ ¼

ffiffiffiffiffiffi
2p

p

4
;

ð9Þ

other components being zero.
Combination of Eqs. (1), (2), (7) and (9) then yields the following formulae relating the components of f

and g and the crack-face weight functions:
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4ffiffiffiffiffiffi
2p

p f11ðz=aÞ ¼ z2k1yða; zþ; 0þÞ ¼ z2k1yða; z�; 0�Þ

4ffiffiffiffiffiffi
2p

p f22ðz=aÞ ¼ z2k2xða; zþ; 0þÞ ¼ z2k2xða; z�; 0�Þ

4ffiffiffiffiffiffi
2p

p f33ðz=aÞ ¼ z2k3zða; zþ; 0þÞ ¼ �z2k3zða; z�; 0�Þ

4ffiffiffiffiffiffi
2p

p f23ðz=aÞ ¼ �z2k2zða; zþ; 0þÞ ¼ z2k2zða; z�; 0�Þ ¼
z2

1� m
k3xða; zþ; 0þÞ ¼

z2

1� m
k3xða; z�; 0�Þ

ð10Þ

and

4ffiffiffiffiffiffi
2p

p g11ðz=aÞ ¼ a2k1yða; zþ; 0�Þ ¼ a2k1yða; z�; 0þÞ

4ffiffiffiffiffiffi
2p

p g22ðz=aÞ ¼ a2k2xða; zþ; 0�Þ ¼ a2k2xða; z�; 0þÞ

4ffiffiffiffiffiffi
2p

p g33ðz=aÞ ¼ �a2k3zða; zþ; 0�Þ ¼ a2k3zða; z�; 0þÞ

4ffiffiffiffiffiffi
2p

p g23ðz=aÞ ¼ a2k2zða; zþ; 0�Þ ¼ �a2k2zða; z�; 0þÞ ¼
a2

1� m
k3xða; zþ; 0�Þ ¼

a2

1� m
k3xða; z�; 0þÞ

ð11Þ

(where parity properties of the fmn and gmn have been used).

3. Integrodifferential equations on the functions f22, f33, f23, g22, g33, g23

3.1. Overview of the method

Let us consider a tunnel-crack of width 2a, assuming a ¼ 1 without any loss of generality, subjected to a
pair of unit point forces 
~eei exerted on the crack faces. Then the SIF Kn before any perturbation of the
crack front are the weight functions kni. If now the perturbation consists of a translation of one part of the
front or a rotation of both parts, the crack shape is preserved so that the SIF after perturbation are also
linked to the weight functions. Eq. (5) then yields equations on the weight functions. Applying the forces
close to the front, one thus obtains equations on the functions kmiða; z
; z0
Þ defined by (8). By using re-
lations (10) and (11) connecting the functions kmiða; z
; z0
Þ and the operators f and g, one finally obtains six
integrodifferential equations on the six unknown functions f22, f33, f23, g22, g33, g23.
In practice, the point forces will be applied close to the point ð1; 0; 0Þ of the fore part of front. The index i

will be taken as x or z since the choice i ¼ y would yield equations on the already known functions f11 and
g11. Two motions of the crack front will be studied:

• a translatory motion of the sole rear part of the front, the variations dKm of the SIF being observed at the
point zþ of the fore part of the front (Fig. 1(a));

• an in-plane rotation, by an angle e � 1, of the fore part of the front around the point ð1; 0; 0Þ and of the
rear part of the front around the point ð�1; 0; zÞ, the variations dKm of the SIF being then observed at the
point z� of the rear part of the front (Fig. 1(b)).

3.2. Equations on the weight functions

Let us consider the unperturbed crack and suppose that some unit point forces 
~eei, i ¼ x or z are applied
at points ðx; 0
; 0Þ of the crack faces. Then the SIF before any perturbation of the crack front are given by:
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Knðz0
Þ ¼ knið1; z0
; x; 0Þ ð12Þ
Let us now consider (Fig. 1(a)) a simple translatory motion of the sole rear part of the front, defined by
daðz0þÞ � 0, daðz0�Þ � e where e denotes a small parameter. Then the new SIF are those of a tunnel-crack of
width 2a0 with a0 ¼ 1þ e=2, subjected to point forces exerted at the points ðx0; 0
; 0Þ with x0 ¼ xþ e=2 (see
Fig. 1(a)). Thus

dKmðzþÞ ¼ kmið1þ e=2; zþ; xþ e=2; 0Þ � kmið1; zþ; x; 0Þ ð13Þ

so that, by Eq. (5):

kmið1þ e=2; zþ; xþ e=2; 0Þ � kmið1; zþ; x; 0Þ ¼ e
Z þ1

�1
gmnðz0 � zÞknið1; z0�; x; 0Þdz0 ð14Þ

Next consider a rotation of the fore and rear parts of the front, defined by daðz0þÞ � ez0, daðz0�Þ � eðz� z0Þ
where e again denotes a small parameter (Fig. 1(b)). The axes adapted to the new front are ðu; y;wÞ (see Fig.
1(b)). Since

ex
! ¼ eu

! þ eew
!
; ez

! ¼ ew
! � eeu

! ð15Þ
the SIF after perturbation at point z� are kmxða0;w�; u; 0Þ þ ekmzða0;w�; u; 0Þ for i ¼ x and
kmzða0;w�; u; 0Þ � ekmxða0;w�; u; 0Þ for i ¼ z, where a0 again denotes the new half-width of the crack. It is easy
to show that

a0 ¼ 1þ z
2

e; u ¼ xþ z
2

e; w ¼ z� ð1þ xÞe ð16Þ

Hence, Eq. (5) applied at point z� yields for m ¼ 2, 3: for i ¼ x,

kmx 1
�

þ z
2

e; ½z� ð1þ xÞe	�; xþ z
2

e; 0
�
� kmxð1; z�; x; 0Þ þ ekmzð1; z�; x; 0Þ ¼ �eNmnknxð1; z�; x; 0Þ

þ ePV
Z þ1

�1
fmnðz0 � zÞknxð1; z0�; x; 0Þ

dz0

z� z0
þ e

Z þ1

�1
gmnðz0 � zÞknxð1; z0þ; x; 0Þz0 dz0 ð17Þ

Fig. 1. Special motions of the crack front.
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and for i ¼ z:

kmz 1
�

þ z
2

e; ½z� ð1þ xÞe	�; xþ z
2

e; 0
�
� kmzð1; z�; x; 0Þ � ekmxð1; z�; x; 0Þ ¼ �eNmnknzð1; z�; x; 0Þ

þ ePV
Z þ1

�1
fmnðz0 � zÞknzð1; z0�; x; 0Þ

dz0

z� z0
þ e

Z þ1

�1
gmnðz0 � zÞknzð1; z0þ; x; 0Þz0 dz0 ð18Þ

3.3. Equations on the functions kmiða; z
; z0

 Þ, m ¼ 2; 3, i ¼ x; z

These equations are obtained by dividing Eqs. (14), (17), (18) by
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
and then taking the limit x ! 1,

using the definition (8) of the kmiða; z
; z0

Þ.

For m ¼ 2, 3 and i ¼ x, z, one obtains:

lim
x!1

Z þ1

�1
gmnðz0 � zÞ knið1; z

0�; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p dz0 ¼
Z þ1

�1
gmnðz0 � zÞknið1; z0�; 0þÞdz0 ð19Þ

lim
x!1
PV

Z þ1

�1
fmnðz0 � zÞ knið1; z

0�; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p dz0

z� z0
¼ PV

Z þ1

�1
fmnðz0 � zÞknið1; z0�; 0þÞ

dz0

z� z0
ð20Þ

These equations mean that the symbols limx!1 and (PV)
Rþ1
�1 simply commute. This is because when x ! 1,

the points ðx; 0
; 0Þ of application of the forces do not approach the point of observationM�ðz0�Þ of the SIF
knið1; z0�; x; 0Þ so that these SIF remain bounded for all z0.
However, when x ! 1, the points ðx; 0
; 0Þ of application of the forces do approach the point of ob-

servation Mþðz0þÞ of the SIF knið1; z0þ; x; 0Þ for the special value z0 ¼ 0. Thinks then become more intricate.
It is thus shown in Appendix A that

lim
x!1

Z þ1

�1
gm2ðz0 � zÞ k2xð1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼ PV
Z þ1

�1
gm2ðz0 � zÞk2xð1; z0þ; 0þÞz0 dz0; ð21Þ

a similar result holding with the substitutions gm2 ! gm3, k2x ! k3z; also,

lim
x!1

Z þ1

�1
gm2ðz0 � zÞ k2zð1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼ PV
Z þ1

�1
gm2ðz0 � zÞk2zð1; z0þ; 0þÞz0 dz0 þ

4ffiffiffiffiffiffi
2p

p m
2� m

gm2ð�zÞ;

ð22Þ
and similarly with the substitutions gm2 ! gm3, k2z ! k3x.
Combination of Eqs. (14), (17), (18) and (19)–(22) then yields the following equations on the functions

kmiða; z
; z0

 Þ, for m ¼ 2; 3:

kmið1þ e=2; zþ; 0þÞ � kmið1; zþ; 0þÞ ¼ e
Z þ1

�1
gmnðz0 � zÞknið1; z0�; 0þÞdz0 ð23Þ

for i ¼ x; z, and

kmx 1
�

þ z
2

e; ½z� 2e	�; 0þ
�
� kmxð1; z�; 0þÞ þ ekmzð1; z�; 0þÞ

¼ �eNmnknxð1; z�; 0þÞ þ e
4ffiffiffiffiffiffi
2p

p m
2� m

gm3ð�zÞ þ ePV
Z þ1

�1
fmnðz0 � zÞknxð1; z0�; 0þÞ

dz0

z� z0

þ ePV
Z þ1

�1
gmnðz0 � zÞknxð1; z0þ; 0þÞz0 dz0 ð24Þ
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kmz 1
�

þ z
2

e; ½z� 2e	�; 0þ
�
� kmzð1; z�; 0þÞ � ekmxð1; z�; 0þÞ

¼ �eNmnknzð1; z�; 0þÞ þ e
4ffiffiffiffiffiffi
2p

p m
2� m

gm2ð�zÞ þ ePV
Z þ1

�1
fmnðz0 � zÞknzð1; z0�; 0þÞ

dz0

z� z0

þ ePV
Z þ1

�1
gmnðz0 � zÞknzð1; z0þ; 0þÞz0 dz0 ð25Þ

3.4. Equations on the functions f22, f33, f23, g22, g33, g23

Using relations (10) and (11) and identifying terms of order e in Eqs. (23)–(25), one obtains the following
integrodifferential equations on the functions:

f 0
22ðzÞ ¼ �2z

Z þ1

�1
½g22ðz� z0Þg22ðz0Þ � ð1� mÞg23ðz� z0Þg23ðz0Þ	dz0 ð26Þ

f 0
33ðzÞ ¼ �2z

Z þ1

�1
½g33ðz� z0Þg33ðz0Þ � ð1� mÞg23ðz� z0Þg23ðz0Þ	dz0 ð27Þ

f 0
23ðzÞ ¼ �2z

Z þ1

�1
g23ðz� z0Þ g22ð þ g33Þðz0Þdz0 ð28Þ

1

��
þ z2

4

�
g22ðzÞ

	0
þ 2ð1� mÞ

2� m
g23ðzÞ ¼ ð1� mÞ

Z þ1

�1
g23ðz� z0Þ f23ðz

0Þ
z0

dz0

� PV
Z þ1

�1
g22ðz� z0Þ f22ðz

0Þ
z0

dz0 ð29Þ

1

��
þ z2

4

�
g33ðzÞ

	0
þ 2ð1� mÞ

2� m
g23ðzÞ ¼ ð1� mÞ

Z þ1

�1
g23ðz� z0Þ f23ðz

0Þ
z0

dz0

� PV
Z þ1

�1
g33ðz� z0Þ f33ðz

0Þ
z0

dz0 ð30Þ

1

��
þ z2

4

�
g23ðzÞ

	0
� 1

2� m
ðg22 þ g33ÞðzÞ ¼ �

Z þ1

�1
g22ð þ g33Þðz� z0Þ f23ðz

0Þ
2z0

dz0

� PV
Z þ1

�1
g23ðz� z0Þ ðf22 þ f33Þðz0Þ

2z0
dz0 ð31Þ

where use has been made of relations (6) and parity properties of the fmn and gmn (see Section 2.1).

4. Differential equations and initial conditions on the functions bFF22, bFF33, bFF23, ĝg22, ĝg33, ĝg23

The definition adopted for the Fourier transform ûuðpÞ of some function uðzÞ is the same as in Part I:

ûuðpÞ �
Z þ1

�1
uðzÞeipz dz ð32Þ
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Note that since f22, f33, g22, g33 are even and f23, g23 odd, f̂f22, f̂f33, ĝg22, ĝg33 are even and real, and f̂f23, ĝg23 odd
and purely imaginary.

4.1. Differential equations

Taking the Fourier transform of Eqs. (26)–(31) is elementary except for terms of the form

ðPVÞ
Z þ1

�1
gmnðz� z0Þ frsðz

0Þ
z0

dz0;

which are envisaged in Appendix B. The resulting equations read as follows:

bFF 0
22 ¼ �2

p½ĝg
2
22 � ð1� mÞĝg223	

0 ð33Þ

bFF 0
33 ¼ �2

p½ĝg
2
33 � ð1� mÞĝg223	

0 ð34Þ

bFF 0
23 ¼ �2

p½ĝg23ðĝg22 þ ĝg33Þ	
0 ð35Þ

ĝg22 �
ĝg0022
4

¼ 1
p½bFF22ĝg22 � ð1� mÞbFF23ĝg23	 ð36Þ

ĝg33 �
ĝg0033
4

¼ 1
p½bFF33ĝg33 � ð1� mÞbFF23ĝg23	 ð37Þ

ĝg23 �
ĝg0023
4

¼ 1
p

bFF22 þ bFF33
2

ĝg23

"
þ bFF23 ĝg22 þ ĝg33

2

#
ð38Þ

In these expressions, the functions bFFmn are the definite integrals of the functions f̂fmn defined by

bFFmnðpÞ �
Z p

0

f̂fmnðqÞdqþ
0; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ
i 2�m
2ð1�mÞ ; ðm; nÞ ¼ ð2; 3Þ



ð39Þ

Note that since f̂f22, f̂f33 are even and f̂f23 odd, bFF22, bFF33 are odd and bFF23 even. Because of these parity
properties and those of the ĝgmn, it suffices to determine all functions on the interval ð0;þ1Þ. Also, note that
functions bFF22, bFF33 are real and bFF23 purely imaginary.
Eqs. (33)–(38) form a system of six non-linear differential equations (on the interval ð0;þ1Þ), on the six

unknown functions bFF22, bFF33, bFF23, ĝg22, ĝg33, ĝg23, of order 1 with respect to the bFFmn and order 2 with respect to
the ĝgmn. Hence, to (numerically) get these functions on any interval ½p0; p1	 with 0 < p0 � 1 and p1 � 1,
one may proceed in two ways:

• integrate ‘‘forwards’’, from p0 to p1; this requires knowing the values of the bFFmn, ĝgmn and ĝg
0
mn at p0, that is

near 0;
• integrate ‘‘backwards’’, from p1 to p0; the values of the bFFmn, ĝgmn and ĝg0mn are then needed at p1, that is
near þ1.

The next sections are therefore devoted to the necessary asymptotic study of the functions near 0 and
þ1.
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4.2. Values of bFF22ð0Þ, bFF33ð0Þ, bFF23ð0Þ, ĝg22ð0Þ, ĝg33ð0Þ, ĝg23ð0Þ
From the definition (39) of the bFFmn, it is clear that:

bFF22ð0Þ ¼ bFF33ð0Þ ¼ 0; bFF23ð0Þ ¼ i 2� m
2ð1� mÞ ð40Þ

Moreover, values of ĝg22ð0Þ, ĝg33ð0Þ, ĝg23ð0Þ are given by relations (14) of Part I, recalled here for the sake of
completeness:

ĝg22ð0Þ ¼ �ĝg33ð0Þ ¼
1

4
; ĝg23ð0Þ ¼ 0 ð41Þ

Finally, the derivatives ĝg0mnð0Þ are given by ĝg0mnð0Þ ¼ i
Rþ1
�1 zgmnðzÞdz. For ðm; nÞ ¼ ð2; 3Þ, this integral is

given by Eq. (18) of Part I. For ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ, it is zero since ĝgmn is even. In conclusion,

ĝg022ð0Þ ¼ ĝg033ð0Þ ¼ 0; ĝg023ð0Þ ¼ i
m

2ð1� mÞ ð42Þ

4.3. Asymptotic behavior of bFF22ðpÞ, bFF33ðpÞ, bFF23ðpÞ, ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ for p ! 0þ

As a first approximation, the values of the bFFmnðp0Þ, ĝgmnðp0Þ and ĝg0mnðp0Þmay be taken equal to those of thebFFmnð0Þ, ĝgmnð0Þ and ĝg0mnð0Þ. However, more refined values can be found by studying the asymptotic behavior
of the functions near 0. Such a study will also be needed to derive asymptotic formulae for the fmnðzÞ and
gmnðzÞ for z ! þ1, which will nicely supplement the numerical values found over some necessary finite
interval.
Let us suppose that just as the function ĝg11ðpÞ (Leblond et al., 1996), ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ admit, for

p ! 0þ, a development involving terms of the form pa lnb p, a, b 2 N. With this hypothesis, it is shown in
Appendix C that:

ĝg22ðpÞ ¼
1

4
þ 1� 2m

4
p2 ln p þOðp2Þ ð43Þ

ĝg33ðpÞ ¼ � 1
4
� 1þ m
4ð1� mÞ p

2 ln p þOðp2Þ ð44Þ

ĝg23ðpÞ ¼ i
m

2ð1� mÞ p þ i
mðm2 � 2m þ 2Þ
4ð1� mÞ2

p3 ln p þOðp3Þ ð45Þ

bFF22ðpÞ ¼ � 1� 2m
2

p ln p þOðpÞ ð46Þ

bFF33ðpÞ ¼ � 1þ m
2ð1� mÞ p ln p þOðpÞ ð47Þ

bFF23ðpÞ ¼ i 2� m
2ð1� mÞ þ i

3m2ð2� mÞ
4ð1� mÞ2

p2 ln p þOðp2Þ ð48Þ

for p ! 0þ.
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4.4. Asymptotic behavior of bFF22ðpÞ, bFF33ðpÞ, bFF23ðpÞ, ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ for p ! þ1

For p ! þ1, the set of Eqs. (33)–(38) approximately reads as follows:

bFF 0
mn ¼ 0; ĝgmn �

ĝg00mn
4

¼ 0; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 3Þ ð49Þ

Eq. (49)1 strongly suggests that the bFFmnðpÞ tend toward some finite limits for p ! þ1. The determination of
these limits, noted bFF 1

mn, is expounded in Appendix D. The results are as follows:

bFF 1
22 ¼ 2� 3m

2ð2� mÞ ;
bFF 1
33 ¼ 2þ m

2ð2� mÞ ;
bFF 1
23 ¼ i 2

2� m
ð50Þ

Eq. (49)2 shows that the ĝgmnðpÞ behave like e
2p for p ! þ1. However, the increasing component e2p is
obviously physically inadmissible, so that the ĝgmnðpÞ must behave like e�2p. Unfortunately, Eq. (49)2 fails to
provide the values of the pre-exponential factors here.

5. Determination of functions f22, f33, f23, g22, g33, g23

Prior to giving numerical results, we briefly discuss here how the functions fmn and gmn can be obtained
from the bFFmn and ĝgmn.

5.1. Inverse Fourier transform

The gmn are readily deduced from the ĝgmn through Fourier inversion:

gmnðzÞ ¼
1

2p

Z þ1

�1
ĝgmnðpÞe�ipz dp ¼ 1

p

Z þ1

0

ĝgmnðpÞ cos pzdp; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ ð51Þ

g23ðzÞ ¼
1

2p

Z þ1

�1
ĝg23ðpÞe�ipz dp ¼ � 1

p

Z þ1

0

iĝg23ðpÞ sin pzdp ð52Þ

where parity properties of the ĝgmn have been used.
Also, f̂fmn ¼ bFF 0

mn, so that:

fmnðzÞ ¼
1

2p

Z þ1

�1
bFF 0
mnðpÞe�ipz dp ¼ 1

p

Z þ1

0

bFF 0
mnðpÞ cos pzdp; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ ð53Þ

f23ðzÞ ¼
1

2p

Z þ1

�1
bFF 0
23ðpÞe�ipz dp ¼ � 1

p

Z þ1

0

ibFF 0
23ðpÞ sin pzdp ð54Þ

where parity properties have again been used.
The functions fmn and gmn will be determined numerically from these formulae over some finite interval,

say for 06 z6 z1, z1 � 1. For values of z > z1, one may use the asymptotic expressions given below.

5.2. Asymptotic behavior of f22, f33, f23, g22, g33, g23 for z ! þ1

The derivation of these behaviors is a little complex and hence relegated to Appendix E. Only the final
results are given below:
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g22ðzÞ �
1� 2m
4z3

; g33ðzÞ � � 1þ m
4ð1� mÞz3 ; g23ðzÞ �

3mðm2 � 2m þ 2Þ
4ð1� mÞ2z4

ð55Þ

f22ðzÞ �
1� 2m
4z

; f33ðzÞ �
1þ m

4ð1� mÞz ; f23ðzÞ � � 3m2ð2� mÞ
4ð1� mÞ2z2

ð56Þ

6. Numerical procedure and results

6.1. Calculation of bFF22, bFF33, bFF23, ĝg22, ĝg33, ĝg23
As mentioned above, the set of differential equations (33)–(38) can be solved on any interval ½p0; p1	 with

0 < p0 � 1 and p1 � 1, by integrating ‘‘forwards’’, from p0 to p1, or ‘‘backwards’’, from p1 to p0. Let us
compare these two methods:

• Integrating ‘‘forwards’’ seems, a priori, more suitable since the values of the bFFmnðp0Þ, ĝgmnðp0Þ, ĝg0mnðp0Þ are
known (Eqs. (43)–(48)), in contrast to the precise asymptotic behavior of the ĝgmnðpÞ and ĝg0mnðpÞ for
p ! þ1. However, due to the behavior in e
2p of the ĝgmnðpÞ at infinity, any (inevitable) numerical error
in the initial conditions or the integration method will yield a spurious component in e2p in the ĝgmnðpÞ
that will quickly ‘‘blow up’’, thus prohibiting to reach large values of p.

• Hence the only possibility is to integrate ‘‘backwards’’. The values of the bFFmnðp1Þ, ĝgmnðp1Þ, ĝg0mnðp1Þ are
then needed, but only these of the bFFmnðp1Þ are known (Eq. (50)). To determine those of the ĝgmnðp1Þ and
ĝg0mnðp1Þ, one can use a Newton method aimed at matching the values of the ĝgmnðp0Þ and ĝg0mnðp0Þ given by
Eqs. (43)–(45). (One can show that the values obtained for the bFFmnðp0Þ necessarily then match conditions
(46)–(48).) This task is not straightforward because one must first find good ‘‘initial values’’ for the
ĝgmnðp1Þ and ĝg0mnðp1Þ in the Newton method, ensuring convergence of the algorithm. Indeed, for many
choices of these initial values, the functions diverge toward infinity when p approaches p0, due to the sin-
gularity in 1=p of the differential equations.

In practice, the Runge–Kutta method of order four is used to integrate from p1 ¼ 50 to p0 ¼ 10�6 with
an accuracy of 10�5. The solutions obtained for m ¼ 0:1 and m ¼ 0:3 are given in Figs. 2–5.

Fig. 2. Functions bFF22ðpÞ, bFF33ðpÞ.
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Fig. 3. Function bFF23ðpÞ.

Fig. 4. Functions ĝg22ðpÞ, ĝg33ðpÞ.

Fig. 5. Function ĝg23ðpÞ.

4448 V. Lazarus, J.-B. Leblond / International Journal of Solids and Structures 39 (2002) 4437–4455



6.2. Calculation of �ff22, �ff33

Functions �ff22, �ff33 (in addition to ĝg22, ĝg33 and ĝg23) were needed in Part I for the study of the bifurcation
and stability problems. They are defined by Eq. (23) of Part I. One can easily show that �ffmnð0Þ ¼ 1=4,
�ff 0
mn ¼ �bFFmn, ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ. Thus �ff22 and �ff33 can be obtained numerically through integration of bFF22
and bFF33. The results are given in Fig. 3 of Part I.
6.3. Calculation of operators f and g

It is recalled that the operators f and g are linked to the fundamental kernel Z by relations (1) and (2),
that their components 11 are given in Leblond et al. (1996) and that their components 12, 21, 13, 31 are
zero. The other components are obtained by using Eqs. (51)–(54) and (4). In practice, the integration in-
terval ½0;þ1Þ is replaced by the interval ½10�6; 50	, and calculations are performed for z 2 ½0; 50	. Functions
f22, f33, f23 are presented in Figs. 6 and 7 for z 2 ½0; 20	, and functions g22, g33, g23 in Figs. 8 and 9 for
z 2 ½0; 6	. Beyond these limits, the asymptotic expressions (55) and (56) are found to fit very well to the
numerical results.

Fig. 6. Functions f22ðzÞ, f33ðzÞ.

Fig. 7. Function f23ðzÞ.
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One can observe that components 23 of operators f and g, which represent the coupling effect between
modes 2 and 3, are all the smaller as Poisson’s ratio m is low. Also, it is somewhat surprising that for m ¼ 0:3,
g33ðzÞ, which is tied to the 3rd SIF at point z� of the rear part of the front when point forces 
~eez are applied
close to the point 0þ of the fore part of the front, is not maximum for z ¼ 0. Note, however, that a similar
phenomenon is known to occur for the half-plane crack: the mode 3 SIF generated by point forces 
~eez
exerted on the crack faces is not maximum at that point of the crack front located closest to the points of
application of the forces. Also, this effect can be observed to vanish for sufficiently small Poisson’s ratios.

Appendix A. Justification of formulae (21), (22)

To calculate limx!1
Rþ1
�1 gmnðz0 � zÞððknið1; z0þ; x; 0ÞÞ=ð

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
ÞÞz0 dz0, split the integration domain

ð�1;þ1Þ into ð�1;�gÞ [ ðg;þ1Þ and ½�g; g	, g being a momentarily fixed arbitrary positive number.
For z0 2 ð�1;�gÞ [ ðg;þ1Þ, ððknið1; z0þ; x; 0ÞÞ=ð

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
ÞÞ has a finite limit for x ! 1, equal to knið1; z0þ; 0þÞ

by definition, since the observation point z0þ of the SIF differs from the limit-points ðx ¼ 1; y ¼ 0
; z ¼ 0Þ of
application of the point forces. Hence

Fig. 8. Functions g22ðzÞ, g33ðzÞ.

Fig. 9. Function g23ðzÞ.
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lim
x!1

Z
ð�1;�gÞ[ðg;þ1Þ

gmnðz0 � zÞ knið1; z
0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼
Z
ð�1;�gÞ[ðg;þ1Þ

gmnðz0 � zÞknið1; z0þ; 0þÞz0 dz0 ðA:1Þ

To evaluate the limit, for x ! 1, of the integral over ½�g; g	, let us perform a first order Taylor expansion of
the quantity gmnðz0 � zÞ around the point z0 ¼ 0:Z g

�g
gmnðz0 � zÞ knið1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼ gmnð�zÞ
Z g

�g

knið1; z0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 þ
Z g

�g
Oðz0Þ knið1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0

ðA:2Þ
The examples of the semi-infinite crack, the penny-shaped crack and the tunnel-crack in mode 1 strongly
suggest that ðknið1; z0þ; x; 0Þ=

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
Þ is bounded by Cst:z0�2 for z0 ! 0. Therefore the integrand in the second

term of the right-hand side of Eq. (A.2) is Oð1Þ, so that this equation may be rewritten as:Z g

�g
gmnðz0 � zÞ knið1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼ gmnð�zÞ
Z g

�g

knið1; z0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 þOðgÞ ðA:3Þ

The integral in the right-hand side of (A.3) is zero if knið1; z0þ; x; 0Þ is even with respect to z0, that is for
ðn; iÞ ¼ ð2; xÞ; ð3; zÞ. On the other hand, if knið1; z0þ; x; 0Þ is odd, i.e. for ðn; iÞ ¼ ð2; zÞ; ð3; xÞ, one gets upon use
of the homogeneity property of knið1; z0þ; x; 0Þ and the change of variable z00 ¼ z0=ð1� xÞ:Z g

�g

knið1; z0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼
Z g=ð1�xÞ

�g=ð1�xÞ
knið1=ð1� xÞ; z00þ ; x=ð1� xÞ; 0Þ z00 dz00

The knið1=ð1� xÞ; z00þ ; x=ð1� xÞ; 0Þ are the weight functions of the tunnel-crack of width 2=ð1� xÞ at point
z00

þ
when the forces are applied at a distance 1=ð1� xÞ � x=ð1� xÞ ¼ 1 from the fore part of the front. Since

when x ! 1, this width becomes infinity, the knið1=ð1� xÞ; z00þ ; x=ð1� xÞ; 0Þ behave as the weight functions
of a half-plane crack when the forces are applied at a distance of unity from the front. Using the well-
known expressions of these weight functions (see for instance Gao and Rice (1986)), one then gets for
ðn; iÞ ¼ ð2; zÞ; ð3; xÞ:

lim
x!1

Z g=ð1�xÞ

�g=ð1�xÞ
knið1=ð1� xÞ; z00þ ; x=ð1� xÞ; 0Þz00 dz00 ¼

ffiffiffiffiffiffi
1

2p

r
4m
2� m

It follows from these elements that (A.3) finally reads, in the limit x ! 1:

lim
x!1

Z g

�g
gmnðz0 � zÞ knið1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼
OðgÞ if ðn; iÞ ¼ ð2; xÞ or ð3; zÞffiffiffiffi

1
2p

q
4m
2�m gmnð�zÞ þOðgÞ if ðn; iÞ ¼ ð2; zÞ or ð3; xÞ

(
ðA:4Þ

Combination of Eqs. (A.1) and (A.4), in the limit g ! 0, finally yields relations (21) and (22).

Appendix B. Calculation of some Fourier transforms

By definition, the symbol FT denoting the Fourier transform:

FT PV

Z þ1

�1
gmnðz

�
� z0Þ frsðz

0Þ
z0

dz0
	
ðpÞ ¼ lim

g!0

Z þ1

�1
eipz dz

Z
ð�1;�gÞ[ðg;þ1Þ

gmnðz� z0Þ frsðz
0Þ

z0
dz0

ðz00 ¼ z� z0Þ ¼ lim
g!0

Z þ1

�1
gmnðz00Þeipz

00
dz00:

Z
ð�1;�gÞ[ðg;þ1Þ

frsðz0Þ
z0

eipz
0
dz0

� ĝgmnðpÞPV
Z þ1

�1

frsðzÞ
z
eipz dz ðB:1Þ
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Now,

d

dp
PV

Z þ1

�1

frsðzÞ
z
eipz dz ¼

Z þ1

�1
frsðzÞieipz dz ¼ if̂frsðpÞ ) PV

Z þ1

�1

frsðzÞ
z
eipz dz

¼ i
Z p

0

f̂frsðqÞdqþ PV
Z þ1

�1

frsðzÞ
z

dz ðB:2Þ

Now, for ðr; sÞ ¼ ð2; 2Þ or ð3; 3Þ, frs is even. Eqs. (B.1) and (B.2) then yield:

FT PV

Z þ1

�1
gmnðz

�
� z0Þ frsðz

0Þ
z0

dz0
	
ðpÞ ¼ i ĝgmnðpÞ bFFrsðpÞ; ðB:3Þ

bFFrsðpÞ �
Z p

0

f̂frsðqÞdq ðB:4Þ

for ðr; sÞ ¼ ð2; 2Þ, ð3; 3Þ.
Similarly, for ðr; sÞ ¼ ð2; 3Þ, Eqs. (B.1) and (B.2) yield:

FT

Z þ1

�1
gmnðz

�
� z0Þ f23ðz

0Þ
z0

dz0
	
ðpÞ ¼ ĝgmnðpÞ i

Z p

0

f̂f23ðqÞdq
�

þ
Z þ1

�1

f23ðzÞ
z
dz
	

But
Rþ1
�1 ðf23ðzÞ=zÞdz is given by Eq. (17) of Part I. Thus,

FT

Z þ1

�1
gmnðz

�
� z0Þ f23ðz

0Þ
z0

dz0
	
ðpÞ ¼ ĝgmnðpÞ ibFF23ðpÞ�

þ 2

2� m

	
; ðB:5Þ

bFF23ðpÞ � Z p

0

f̂f23ðqÞdqþ i
2� m
2ð1� mÞ ðB:6Þ

The choice of the additive constant iðð2� mÞ=ð2ð1� mÞÞÞ in the definition of bFF23 here was made in order to
simplify the differential equations (33)–(38) as much as possible.

Appendix C. Determination of the asymptotic behavior of bFF22ðpÞ, bFF33ðpÞ, bFF23ðpÞ, ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ for

p ! 0þ

It is assumed that ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ admit, for p ! 0þ, expansions involving terms of the form pa lnb p
(a; b 2 N). By Eqs. (41) and (42), these expansions read

ĝg22ðpÞ ¼ 1=4þ a2 p2 ln
b2 p þOðp2 lnb2�1 pÞ ðC:1Þ

ĝg33ðpÞ ¼ �1=4þ a3 p2 ln
b3 p þOðp2 lnb3�1 pÞ ðC:2Þ

ĝg23ðpÞ ¼ i
m

2ð1� mÞ p þ a4 p3 ln
b4 p þOðp3 lnb4�1 pÞ ðC:3Þ

The absence of a term of the form p2 lnb p in ĝg23ðpÞ here can be checked to be compatible with the dif-
ferential equations (33)–(38).
Inserting these equations into the set of differential equations (33)–(38) and identifying principal terms,

one first gets

b2 ¼ b3 ¼ b4 ¼ 1 ðC:4Þ
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To next determine the constants a2, a3, a4, one must consider the terms proportional to p2 in the expansions
of ĝg22ðpÞ and ĝg33ðpÞ, since the derivatives of both expressions p2 ln p and p2 involve terms of the same order
p. Thus, let us write these expansions in the form

ĝg22ðpÞ ¼ 1=4þ a2 p2 ln p þ b2p2 þOðp3 lnc2 pÞ

ĝg33ðpÞ ¼ �1=4þ a3 p2 ln p þ b3p2 þOðp3 lnc3 pÞ

Eqs. (33)–(35) then yield, account being taken of (39):

bFF22ðpÞ ¼ �2a2 p ln p � 2b2

�
� a2 þ

m2

1� m

�
p þOðp2 lnc2 pÞ ðC:5Þ

bFF33ðpÞ ¼ 2a3 p ln p þ 2b3

�
� a3 �

m2

1� m

�
p þOðp2 lnc3 pÞ ðC:6Þ

bFF23ðpÞ ¼ i 2� m
2ð1� mÞ � i

3m
2ð1� mÞ ða2 þ a3Þp2 ln p þOðp2Þ ðC:7Þ

Inserting these expressions into (36)–(38), we finally get, after a long but straightforward calculation, by
identifying terms of identical order:

a2 ¼
1� 2m
4

; a3 ¼ � 1þ m
4ð1� mÞ ; a4 ¼ i

mðm2 � 2m þ 2Þ
4ð1� mÞ2

ðC:8Þ

Although the introduction of coefficients b2, b3 in the reasoning was necessary for the reason explained
above, they are found to finally cancel out in the calculation, which therefore fails to yield their values.
Eqs. (C.1)–(C.4) and (C.8) justify Eqs. (43)–(45) of the text, and Eqs. (C.5)–(C.8) justify Eqs. (46)–(48).

Appendix D. Determination of constants bFF1
22 ,

bFF1
33 ,

bFF1
23

Eqs. (B.2) and (B.4) yield, since f22 is an even function:

bFF 1
22 � lim

p!þ1
bFF22ðpÞ ¼ lim

p!þ1
2

Z þ1

0

sin pz
z

f22ðzÞdz

¼pz�u
lim

p!þ1
2

Z þ1

0

sin u
u

f22ðu=pÞdu ¼ pf22ð0Þ

It then follows from Eq. (7) of Part I that:

bFF 1
22 ¼ 2� 3m

2ð2� mÞ ðD:1Þ

A similar reasoning for bFF33 yields:
bFF 1
33 ¼ 2þ m

2ð2� mÞ ðD:2Þ

Finally, Eqs. (B.2), (B.6) and (17) of Part I yield, since f23 is odd:

bFF 1
23 � lim

p!þ1
bFF23ðpÞ ¼ � lim

p!þ1
2i

Z þ1

0

f23ðzÞ
z

cos pzdzþ i 2

2� m
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Now Riemann–Lebesgue’s theorem, applied to the function ðf23ðzÞ=zÞ (which is regular at z ¼ 0 since f23 is
odd), implies that the limit here is 0. The value of bFF 1

23 follows:

bFF 1
23 ¼ i 2

2� m
ðD:3Þ

Appendix E. Determination of the asymptotic behavior of f22ðzÞ, f23ðzÞ, f33ðzÞ, g22ðzÞ, g23ðzÞ, g33ðzÞ for

z ! þ1

These asymptotic behaviors can be deduced from those of bFF22ðpÞ, bFF33ðpÞ, bFF23ðpÞ, ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ for
p ! 0þ. Indeed, with regard to ĝg22ðpÞ for instance, repeated integration by parts of Eq. (51) yields:

g22ðzÞ ¼
1

p
ĝg22ðpÞ

sin pz
z

� 	þ1

0

� 1
p

Z þ1

0

ĝg022ðpÞ
sin pz
z
dp

¼ 1

pz
ĝg022ðpÞ

cos pz
z

� 	þ1

0

� 1

pz

Z þ1

0

ĝg0022ðpÞ
cos pz

z
dp

¼ � 1

pz2
ĝg0022ðpÞ

sin pz
z

� 	þ1

0

þ 1

pz2

Z þ1

0

ĝg00022ðpÞ
sin pz
z
dp ¼ 1

pz4

Z þ1

0

ĝg00022ðu=zÞ sin udu ðpz � uÞ

The bracketed terms here vanish because of the behavior of ĝg22 near 0
þ and þ1 (see Sections 4.2 and 4.4).

Now Eq. (43) implies that for p ! 0þ,

ĝg00022ðpÞ �
1� 2m
2p

Insertion of this result into the preceding expression yields:

g22ðzÞ �
1� 2m
4z3

for z ! þ1
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