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Abstract

For any plane crack in an infinite isotropic elastic body subjected to some constant loading, Bueckner—Rice’s weight
function theory gives the variation of the stress intensity factors due to a small coplanar perturbation of the crack front.
This variation involves the initial SIF, some geometry independent quantities and an integral extended over the front,
the “fundamental kernel” of which is linked to the weight functions and thus depends on the geometry considered. The
aim of this paper is to determine this fundamental kernel for the tunnel-crack. The component of this kernel linked to
purely tensile loadings has been obtained by Leblond et al. [Int. J. Solids Struct. 33 (1996) 1995]; hence only shear
loadings are considered here. The method consists in applying Bueckner—Rice’s formula to some point-force loadings
and special perturbations of the crack front which preserve the crack shape while modifying its size and orientation.
This procedure yields integrodifferential equations on the components of the fundamental kernel. A Fourier transform
in the direction of the crack front then yields ordinary differential equations, that are solved numerically prior to final
Fourier inversion.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consider a plane crack embedded in an infinite isotropic elastic solid subjected to some arbitrary,
constant loading. Eq. (1) of Part I gives the variation of the SIF resulting from any small, in-plane per-
turbation of the crack front. This equation notably involves an integral extended over the front. As will be
detailed below, the “fundamental kernel” Z in this integral is linked to the weight functions of the crack, i.e.
to the SIF induced on the crack front by unit point forces exerted on the crack lips, in the limit when the
points of application of these forces get infinitely close to the crack front. Therefore, it depends upon the
entire geometry of the crack. It can be deduced for instance from the works of Bueckner (1987) or Meade
and Keer (1984) on weight functions for a half-plane crack, from those of Kassir and Sih (1975), Tada et al.
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(1973) and Stallybrass (1981) for a circular connection and from that of Bueckner (1987) for a penny-
shaped crack. This has been done by Rice (1985) and Gao and Rice (1986) for a half-plane crack, by Gao
and Rice (1987a) for a circular connection and by Gao and Rice (1987b) and Gao (1988) for a penny-
shaped crack. The weight functions and the fundamental kernel are also known for an interface half-plane
crack (Lazarus and Leblond, 1998). For the tunnel-crack, the component Z;; linked to tensile loadings has
been derived by Leblond et al. (1996). The aim of Part II of this work is to derive the other components Z,,,,,
m,n = 2,3 linked to shear loadings. '

The method used is based on both works of Leblond et al. (1996) and Lazarus and Leblond (1998). It is
of “special” rather than ‘“‘general” nature in the terminology employed by Bueckner (1987). This means
that it avoids the calculation of the entire solution of the elasticity problems implied, but concentrates
instead on the sole feature of interest, namely the distribution of the SIF along the crack front. Considering
the complexity of the equations obtained even with such a “reduction’, one may reasonably conjecture that
any ‘“general” method of solution would be intractable.

The principle of our method is to apply Eq. (1) of Part I to some special loadings and perturbations of
the front. The loadings considered consist of point forces applied close to the crack front, so that the SIF
prior to the perturbation are just components of the fundamental kernel Z. The perturbations envisaged
consist of a small translation of the rear part of the front and a small rotation of both parts about an axis
normal to the crack plane. Since the shape of the crack is preserved in these transformations, the new SIF
are still connected to Z. One thus obtains integrodifferential equations on the components of Z which can
be solved through Fourier transform along the direction of the crack front.

The paper is organized as follows. Necessary elements from Part I are recalled in Section 2 for com-
pleteness. The integrodifferential equations on the components of Z are presented in Section 3. The Fourier
transform of these equations in the direction of the crack front yields second order ordinary differential
equations, duly completed by suitable “initial” conditions. This complete system of equations is presented
in Section 4, and the necessary subsequent Fourier inversion is sketched in Section 5. As could be forecast
in view of the complexity of the problem, this system does not have any simple analytical solution and must
be solved numerically. The numerical procedure and results are presented in the final Section 6.

2. Preliminaries
2.1. Elements of Part 1

For ease of reference, indispensable elements of Part I are briefly recalled here.

For the tunnel-crack of width 2a, the fundamental kernel Z, which depends a priori on three parameters,
a, z, Z, can be expressed in terms of two operators f and g depending only on one parameter through the
following relations:

2z 2 = 2az 7) = E =2 (1)
(z —z)
Z(a;z+,2/7) = Z(a;Z*7Z'+) = M (2)

Moreover, the following relations hold:

! As will be seen, all other remaining components are zero.
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fo=fu=fu=fu=gn=g1=g3=8g1=0 (3)

fo=—1=v)fs gn=—(1-v)gx 4)

Hence, the determination of the fundamental kernel is reduced to that of eight scalar functions of one
variable: fi1, fa, f33, f23, 11, 822, €33, &23-

The functions fi; and g;; pertaining to mode 1 loadings have been calculated by Leblond et al. (1996).
The aim of this work is to determine the six other functions, pertaining to shear mode 2 + 3 loadings.
Among them, f2, f33, g2, €33 are even and f>3, g»3 odd functions.

Our starting point is Eq. (1) of Part I, which takes the form (10) and (11) for 6K, and 8K in the case of a
tunnel-crack. In a compact form more suitable here, these equations read:

+00 /) I+ +
8Kon(2") = [8Kn (2" )]s zsuer) + NunKon(2) % (z*) + PV / Fom (%)K (Z) Ba(Z) — da(z") 4,

—o0 (z —z)°
+00 /) 5 -\ _ 8 +
+/ gmn(z Z)Kn(z/)wdz’, mon=2,3 (5)
o a a
where Einstein’s implicit convention is used for the index » and

2 2(1 —v)
Nom=———' N2 = 6
23 PR 32 7y (6)

v denoting Poisson’s ratio and other components of N being zero. The values of the 8K,,(z”) for a point
M~ (z7) belonging to the line (x = —a) are given by the same expression with the obvious substitutions

7t — 77, 7T = T

2.2. Relations between functions f,,, &mw and crack-face weight functions

Let k,;(a;z5;x',2") (m = 1,2,3, i = x,y,z) denote the mth SIF generated at the point z* of the front of a
tunnel-crack of width 2a by unit point forces +¢; exerted on the points (x’,0%, ') of the crack faces. Leblond
et al. (1999) have shown that the fundamental kernel Z is linked to these crack-face weight functions by the
following formula:

Zm,,(a;zi,z/i) = Am-(z':)km,-(a;zi;z'i) (7)
where Einstein’s implicit summation convention is employed for the index i. In this equation,

+ . kmi(a; 255X, 2) - . kyi(a; 25X, 2)

kpi(a;z5 7)) = lim /222272 k(e z5 72 ) = lim 22277
(@:752) = lim PO (@z2) = fim O

and the coefficients 4,;(z") depend on the orientation of the local set of axes chosen to define the SIF (see

Leblond et al., 1999). One verifies that for the choice made in Part I (set of axes (x,,z) for the line (x = a)
and set of axes (—x, —y,z) for the line (x = —a)),

®)

~[§
|

Ay(Z) = A0(2") = 45(") =

~[
|

Ay(&) = Ml ) = — 452 ) =

other components being zero.
Combination of Egs. (1), (2), (7) and (9) then yields the following formulae relating the components of f
and g and the crack-face weight functions:
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4
Efu(z/a) = 2k (a;270%) = 2k (a;27507)
\/‘;_nfgz(z/a) = szZX(a;z+; 0%) = zzkzx(a;z_; 07)

(10)

\/%fg(z/a) = 22k3z(a;z+;0+) = —22k3z(a;zf; 07)

4 f (/ )_ 2k ( . +.O+)_ 2k ( . 7.07)_ Zz k ( . +.O+)_ Z2 k ( . 7.07)
\/%23za_ Z K\ Z =Z r\aZ ] _1*V3xa727 _17V3xa727

and

4 2 oo 2 —. 0t
ﬁg“(z/a) = a’ky(a;27;07) = a“kyy(a;27;07)

4
——gn(z/a) = @’k (a;z7;07) = d’ky(a;27;07)
v (1)
mg33(z/a) = —d*ks.(a;z7;07) = ks (a;z7;07)
ig (z/a) = dko-(a;2";07) = —dky.(a;z;07) = a k (a-z*-O’):a—zk (a;z7;0M)

\/2—7;23 2z\U, ) 2z\U, ) 17V3x ) ) 17V3x ) )

(where parity properties of the f,,, and g,, have been used).

3. Integrodifferential equations on the functions f, f33, fo3, 222, £33, €23
3.1. Overview of the method

Let us consider a tunnel-crack of width 2a, assuming ¢ = 1 without any loss of generality, subjected to a
pair of unit point forces +¢é; exerted on the crack faces. Then the SIF K, before any perturbation of the
crack front are the weight functions k,;. If now the perturbation consists of a translation of one part of the
front or a rotation of both parts, the crack shape is preserved so that the SIF after perturbation are also
linked to the weight functions. Eq. (5) then yields equations on the weight functions. Applying the forces
close to the front, one thus obtains equations on the functions k,,;(a;z%; %) defined by (8). By using re-
lations (10) and (11) connecting the functions k,,(a;z*; Z*) and the operators f and g, one finally obtains six
integrodifferential equations on the six unknown functions f», f33, f23, €22, €33, €23-

In practice, the point forces will be applied close to the point (1,0, 0) of the fore part of front. The index i
will be taken as x or z since the choice i = y would yield equations on the already known functions fi; and
g11. Two motions of the crack front will be studied:

e a translatory motion of the sole rear part of the front, the variations 3K, of the SIF being observed at the
point z* of the fore part of the front (Fig. 1(a));

e an in-plane rotation, by an angle ¢ < 1, of the fore part of the front around the point (1,0,0) and of the
rear part of the front around the point (—1,0, z), the variations 6K, of the SIF being then observed at the
point z~ of the rear part of the front (Fig. 1(b)).

3.2. Equations on the weight functions

Let us consider the unperturbed crack and suppose that some unit point forces +¢;, i = x or z are applied
at points (x, 0%, 0) of the crack faces. Then the SIF before any perturbation of the crack front are given by:
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Fig. 1. Special motions of the crack front.
K, (Z%) = ku(1;2%;x,0) (12)

Let us now consider (Fig. 1(a)) a simple translatory motion of the sole rear part of the front, defined by
da(zt) =0, da(z~) = ¢ where ¢ denotes a small parameter. Then the new SIF are those of a tunnel-crack of
width 24’ with @’ = 1 + ¢/2, subjected to point forces exerted at the points (x',0%,0) with x' = x + ¢/2 (see
Fig. 1(a)). Thus

0K, (z") = k(1 +¢/2;2";x + 6/2,0) — k(1525 x,0) (13)
so that, by Eq. (5):
+00
ki (1 4+ €/2;255x +€/2,0) — kyi(1;2%5x,0) = 8/ g (7 — 2)kui(1;77;x,0)d7 (14)

Next consider a rotation of the fore and rear parts of the front, defined by da(z'") = &7, da(Z™) = ¢(z — /)
where ¢ again denotes a small parameter (Fig. 1(b)). The axes adapted to the new front are (u, y, w) (see Fig.
1(b)). Since

— —

SN - =
e, =e,+ce, e =e,—cte, (15)

the SIF after perturbation at point z= are k. (a;w ;u,0)+ ek, (a’;w;u,0) for i=x and
k(a5 w5 u,0) — ek (a'; wu, 0) for i = z, where o' again denotes the new half-width of the crack. It is easy
to show that

a’:l+%£, u:er%s, w=z—(1+x) (16)

Hence, Eq. (5) applied at point z~ yields for m = 2, 3: for i = x,

kmx(l —1—28; z—(1 —i—x)s]_;x—f—%s, 0) — ke (1;275%,0) + ek, (1;275x,0) = —e Nk (1;275x,0)

+00 dz +oo
—l—sPV/ S (@ — 2Dk (1;27 5 x, O)——|—8/ g (Z — 2Dk (1,27 x,0)2' d7 (17)

!
z—Z2 0



4442 V. Lazarus, J.-B. Leblond | International Journal of Solids and Structures 39 (2002) 44374455

and for i = z:

kmz(l —l—gs; z—(1 —l—x)a]*;x—f—gs, 0) — ke (1;275x,0) — ek (1;275%,0) = —e N,k (15275 x,0)
dZ, e ! /- ! !
4¢PV fm,, —2)k,.(1;275x O) +3 gz — 2k, (1;27;x,0)2' dz (18)

3.3. Equations on the functions km,-(a;zi;z’i), m=2,3i=x,z

These equations are obtained by dividing Eqgs. (14), (17), (18) by v/1 — x and then taking the limit x — 1,
using the definition (8) of the k,,;(a;z*;2").
For m =2, 3 and i = x, z, one obtains:

. i / k,,,-(l;z'_;x,()) ;o e / .0t /

}glilll gmn(z _Z)ﬁdz _[m gmn(z _Z)kni(lvz 10 )dZ (19)
,,,(l;z”;x,O) dZ /+°° dz

l P — =P 7 — + 2

1m V/ fmn m [E— v . fmn( m( 0 )Z—Z, ( 0)

These equations mean that the symbols lim,_,; and (PV) fj;o simply commute. This is because when x — 1,
the points (x, 0%, 0) of application of the forces do not approach the point of observation M~ (z'~) of the SIF
kni(1;275x,0) so that these SIF remain bounded for all 2.

However, when x — 1, the points (x,0%,0) of application of the forces do approach the point of ob-
servation M (z'") of the SIF k,;(1;z"";x,0) for the special value z’ = 0. Thinks then become more intricate.
It is thus shown in Appendix A that

+00 / +oo
. ko (1;2%5x,0)
;o ) y Ay 'ds — ’ .0\ A
tim [ gl -9 I PV/,OQ enal? — (174077 2, (21)
a similar result holding with the substitutions g,, — g3, k2 — ks.; also,
+0o / +0o
. koo (1;21;x,0)
;o ) 3 Xy ' ds — /o +
115111 n gm(Z —2) —m 7 dz PV[w gm(Z — ko (1;21;01)2' d7 +—\/_2 gmz( z),

(22)

and similarly with the substitutions g,, — g3, k2. — k3,.
Combination of Egs. (14), (17), (18) and (19)—(22) then yields the following equations on the functions
kpi(a;z=;27), for m =2, 3:

+00

kpi(1 4+ 8/2;2750%) — ki(1;27507) = ?/ gz — 2k (1;27;07)dZ (23)

—0o0

for i = x,z, and

kmx<l +§8; [z— 28]7;0+> — ke (1;27507) + ek, (1;27;0%)

dZ/
. Co O i B T
k(1520 o () o PV [~ ha(152107)
+00
+8PV/ Zmn(Z — 2)kn(1;27;07)7 dZ (24)
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kmz(l +%8; [z — 28]7;0+) — bz (1;2750%) — ek (1527 07)

+00 dZ/
= — + - I L. 0+
= Mo (1:2750') o= () 4 PV [ A = ha(1730) 5
+00
+é 8mn\Z — Z)Ku\152Z z
PV ! ko (1;21;07)2 dZ 25

3.4. Equations on the functions [, f33, fo3, 822, €33, €23

Using relations (10) and (11) and identifying terms of order ¢ in Egs. (23)—(25), one obtains the following
integrodifferential equations on the functions:

fule) = =25 [ lenle = 2)gld) — (1~ Vigae ~ (]2 (26)
1) = =22 [ lenle —2)gal?) — (1~ Vigae ~ (]2 27)
s =2 | : e5(z— #)gn + g5)(2) (28)
[(1 +Z4 )gzz } g23( )=(1-v) /_;xg23(2—z)ﬁj2/)dzl
PV/OO gn(z—7) f”Z( 2) (29)
(145 et } sy =10 [ gnte- 2 e
- PV / . gz f”( ?) 47 (30)
[(1+5)2a0)] ~ 5o e = [ Gen e -5 e
_PV/W oz — )(fzz +2§33)( ) 4 (31)

where use has been made of relations (6) and parity properties of the f,,, and g,, (see Section 2.1).

4. Differential equations and initial conditions on the functions fzz, IA733, f’23, 22, 833, 23

The definition adopted for the Fourier transform ¢(p) of some function ¢(z) is the same as in Part I:

o) = [ olea: (32)

o0
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Note that since f3, f33, g2, &35 are even and f3, g»3 odd, fzz, f33, &2, &35 are even and real, and fw g,, odd
and purely imaginary.

4.1. Differential equations

Taking the Fourier transform of Egs. (26)—(31) is elementary except for terms of the form

®V) [ gmte- e g

oo

which are envisaged in Appendix B. The resulting equations read as follows:

Fy = _%[g'gz -(1- V)g’gﬂl (33)

Fy ==l - (=g (34)

F,= —21823 (8 + &) (35)

. & = . =

82— % = ;}[anzz — (1 = v)Fx3gy] (36)

& = =

833 — % = ,%[F33g33 = (1 = v)F2gy] (37)

. & 1| Fn+Fn, | & gnté

Gy — &x 2 33 G0 + By 8» T 833 (38)

4 2 2
In these expressions, the functions F,,, are the definite integrals of the functions fmn defined by
(m,n) =(2,2),(3,3)
Futp) = [l @+{ 2 ) = (2,3) 9

Note that since fzz, f33 are even and f23 odd, 1?"22, 1?33 are odd and ﬁn even. Because of these parity
properties and those of the g,,, it suffices to determine all functions on the interval (0, +o0). Also, note that

functions Fzz, F33 are real and F; purely imaginary.

Egs. (33)—(38) form a system of six non-linear differential equations (on the interval (0, +0c0)), on the six
unknown functions }Af“zz, 1?33, ﬁ'23, 827> &33> &23, of order 1 with respect to the 1?',,,,, and order 2 with respect to
the g,,,. Hence, to (numerically) get these functions on any interval [py, ps,] With 0 < py < 1 and p,, > 1,
one may proceed in two ways:

e integrate “forwards”, from py to p,; this requires knowing the values of the IA;',,M, 8., and g at py, that is
near 0; R

e integrate “‘backwards”, from p. to py; the values of the F,,, g,, and g/ are then needed at p., that is
near —+oo.

The next sections are therefore devoted to the necessary asymptotic study of the functions near 0 and
—+00.
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4.2. Values ong(O), ﬁ'ﬁ(o): 1?23(0); £2:(0), 855(0), :;(0)
From the definition (39) of the 1?',,,,,, it is clear that:

F(0) = Fi3(0) =0, Fys(0) = i2(21_—\)")

(40)

Moreover, values of g,,(0), g33(0), £,5(0) are given by relations (14) of Part I, recalled here for the sake of
completeness:

1

£2(0) = —£5(0) = 4’ £(0)=0 (41)
Finally, the derivatives g/, ,(0) are given by g/, (0) =i f zgm(z)dz. For (m,n) = (2,3), this integral is
given by Eq. (18) of Part I. For (m,n) = (2,2), (3, 3) it is zero since g, is even. In conclusion,
N N ~/ : v
82(0) = £5,(0) =0, 5(0) = 12(1 ) (42)

4.3. Asymptotic behavior ofEZ@), E3@) Eg(p) 8(p), &55(p), &:;(p) for p — 0"

As a first approximation, the values of the F,,,(p), &,,,(p0) and g (po) may be taken equal to those of the
F,(0), &,,(0) and g,..(0). However, more refined values can be found by studying the asymptotic behavior
of the functions near 0. Such a study will also be needed to derive asymptotic formulae for the f,,,(z) and
&m(z) for z — +o0, which will nicely supplement the numerical values found over some necessary finite
interval.

Let us suppose that just as the function g;,(p) (Leblond et al., 1996), &,,(p), &;;(p), &;(p) admit, for
p — 07, a development involving terms of the form p* In” p, «, f € N. With this hypothesis, it is shown in
Appendix C that:

£nlp) = 3+ P Inp +O() @3)
8a(p) = ~3 = g7 0+ O (#4)
i) = iy + 1T O (45)
Fr(p) = fTZplnp+O(p) (46)
Pu(p) = = 3= np +0(7) (@7)
Fos(p) =i 2(21__Vv)+ 3:(1(2_ )2)}7 Inp + O(p?) (48)

for p — 07.
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4.4. Asymptotic behavior of F(p), F33(p), F23(p), £22(p). &33(p). &23(p) for p — +o0

For p — 400, the set of Egs. (33)-(38) approximately reads as follows:

/)
Fr:m :0’ gmn _%:07 (man) = (272)5(353)5(273) (49)
Eq. (49), strongly suggests that the Fom (p) tend toward some finite limits for p — 4o00. The determination of
these limits, noted F°, is expounded in Appendix D. The results are as follows:

2—3y
22 —v)’

~ 24y ~e . 2
Fy=57—=, F5=17— (50)

P
2 212 —v)’ 2—v

Eq. (49), shows that the g,,(p) behave like e*? for p — +o0o. However, the increasing component e is

obviously physically inadmissible, so that the g,,,(p) must behave like e=*. Unfortunately, Eq. (49), fails to
provide the values of the pre-exponential factors here.

5. Determination of functions f5,, f3, f23, €22, €33, €23

Prior to giving numerical results, we briefly discuss here how the functions f,,, and g, can be obtained
from the F,, and g,,,.

5.1. Inverse Fourier transform

The g,,, are readily deduced from the g,,, through Fourier inversion:

1 +00 . . 1 +00 A

enl@ =5 [ awle o= [ gup)cosmdp, m) = (2.2, (51)
l “+00 ) l +0o0o )

ex) =5 [ enwe mdp =~ [ igslp)sinpzap (5)
T J_x T Jo

where parity properties of the g,,, have been used.
Also, f,, = F, , so that:

1 +00 -, . 1 +00 =,

fld) =52 [ Fupemdp =2 [ B p)cospedp, (mn) = (22,33 (53)
1 +00 ~, . 1 +00 =, )

fu@) =5 [Pl map == [ i p)singzdp (54)

where parity properties have again been used.
The functions f,,, and g,, will be determined numerically from these formulae over some finite interval,
say for 0 <z<zy, zo > 1. For values of z >z, one may use the asymptotic expressions given below.

5.2. Asymptotic behavior of f>, f33, f>3, €22, €33, &23 for z — +0o0

The derivation of these behaviors is a little complex and hence relegated to Appendix E. Only the final
results are given below:



V. Lazarus, J.-B. Leblond | International Journal of Solids and Structures 39 (2002) 4437-4455 4447

1—2v 1+v 3v(1? = 2v+2)

gn(z) ~ 45 g33(z) ~ —m7 g23(2) ~ W (55)
1—2v 1+v 3?2 —v)

Ja(z) ~ 4z fa(z) ~ m, fa(z) ~ —m (56)

6. Numerical procedure and results
6.1. Caleulation of Fs, Fy3, F;, &5, 833 &3

As mentioned above, the set of differential equations (33)—(38) can be solved on any interval [py, p.,] with
0 < pp < 1 and p,, > 1, by integrating “forwards”, from p, to p,,, or “backwards”, from p,, to p,. Let us
compare these two methods:

o Integrating “forwards” seems, a priori, more suitable since the values of the E, (20)s &un(P0), &, (o) are
known (Eqs. (43)—(48)), in contrast to the precise asymptotic behavior of the g,,(p) and g (p) for
p — +oo. However, due to the behavior in e** of the g,,(p) at infinity, any (inevitable) numerical error
in the initial conditions or the integration method will yield a spurious component in €% in the g,,,(p)
that will quickly “blow up’’, thus prohibiting to reach large values of p.

* Hence the only possibility is to integrate “backwards”. The values of the Fopn(P)s Zom (Do) gmn (ps) are
then needed, but only these of the F,,,(ps) are known (Eq. (50)). To determine those of the g, (poo) and
&,,,(Px), one can use a Newton method aimed at matching the values of the g,,(po) and g, (po) given by
Eqgs. (43)—(45). (One can show that the values obtained for the Fon (po) necessarily then match conditions
(46)—(48).) This task is not straightforward because one must first find good “initial values” for the
8mm(Px) and g (p) in the Newton method, ensuring convergence of the algorithm. Indeed, for many
choices of these initial values, the functions diverge toward infinity when p approaches py, due to the sin-
gularity in 1/p of the differential equations.

In practice, the Runge-Kutta method of order four is used to integrate from p,, = 50 to py = 107 with
an accuracy of 107>, The solutions obtained for v = 0.1 and v = 0.3 are given in Figs. 2-5.

0.70 grrrrrr R R L ————— .
0.60 3
0.50 E
0.40 3
0.30 ~ 3
— [y, v=03 E

0.20 G T Fiﬁ, v =03 _%
o0/ Fp,v=01 3
Fs% V= 0 1

Fig. 2. Functions ﬁ'zz(p), iy ().
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Fig. 3. Function Fy(p).
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Fig. 5. Function g (p).
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6.2. Calculation of]_"gg, ]"33

Functions f»,, f3; (in addition to &,,, &;; and g,;) were needed in Part I for the study of the bifurcation
and stability problems. They are defined by Eq. (23) of Part I. One can easily show that £,,(0) = 1/4,
= —Fu,, (m,n) =(2,2),(3,3). Thus f5, and f3; can be obtained numerically through integration of F»,

and Fy;. The results are given in Fig. 3 of Part .

6.3. Calculation of operators fand g

It is recalled that the operators f and g are linked to the fundamental kernel Z by relations (1) and (2),
that their components 11 are given in Leblond et al. (1996) and that their components 12, 21, 13, 31 are
zero. The other components are obtained by using Egs. (51)—(54) and (4). In practice, the integration in-
terval [0, +00) is replaced by the interval [107¢, 50], and calculations are performed for z € [0, 50]. Functions
S22, f33, fo3 are presented in Figs. 6 and 7 for z € [0,20], and functions gy, g33, g3 in Figs. 8 and 9 for
z € ]0,6]. Beyond these limits, the asymptotic expressions (55) and (56) are found to fit very well to the
numerical results.

0.2 ; — fo2, v =03 ]
N fapv=03
"""""" fo2, v=0.1 ]

e fag, v = 0.1

0.016 e -

— —fa,v=03
........... fz"._)” V= 0.1

0.01 |

0.005 [

Fig. 7. Function f3;(z).
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0.06 £ 933, v =01 3
0.04 Erm
0.02 £
[0 JL T EREEETE FENETRET FENTERE P
0 1 2 3 4 5 6
z
Fig. 8. Functions gx»(z), g33(2).
0.08 [ e
E — 92311/20.3 ]
E ---------- g23,I/=0.1 E
002 | .
0.01 | .
0 B Levuvinins |.......TT[..-:"II’I‘IZ’:'r1~-.-.-».~r-n-r 1 ]
0 1 2 3 4 5 6
z

Fig. 9. Function g»(z).

One can observe that components 23 of operators f and g, which represent the coupling effect between
modes 2 and 3, are all the smaller as Poisson’s ratio v is low. Also, it is somewhat surprising that for v = 0.3,
g33(2), which is tied to the 3rd SIF at point z~ of the rear part of the front when point forces +¢, are applied
close to the point 0" of the fore part of the front, is not maximum for z = 0. Note, however, that a similar
phenomenon is known to occur for the half-plane crack: the mode 3 SIF generated by point forces +é.
exerted on the crack faces is not maximum at that point of the crack front located closest to the points of
application of the forces. Also, this effect can be observed to vanish for sufficiently small Poisson’s ratios.

Appendix A. Justification of formulae (21), (22)

To calculate lim, fj;o g (Z — 2)((knu(1527;x,0)) / (V1 —x))Z dZ, split the integration domain
(—00,400) into (—oo, —n) U (,400) and [—n, 7], n being a momentarily fixed arbitrary positive number.
For 7 € (=00, —1) U (17, +0), ((ku(1;2%;x,0))/(v/1 — x)) has a finite limit for x — 1, equal to k,;(1;2";0")
by definition, since the observation point 2" of the SIF differs from the limit-points (x = 1,y = 0%,z = 0) of
application of the point forces. Hence
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. k(1275 x,0)
lim gz —2)——=——+7/d/ = / g2 — 2k (1;27;07)2/ d7 (A.1)
=1 S (o0 mutn+o0) VI—x (=00, n)U(,+00)
To evaluate the limit, for x — 1, of the integral over [—#, 5], let us perform a first order Taylor expansion of
the quantity g,,(z — z) around the point 2z = 0:

g (1:7+: n
/ gmn(zl _Z)Mz/dzl :gmn(_z)/ km(l ZI Xy 0 /d +/ O m 1 Z, X O)Z,dz,
-1 v1—x o V1—x ox

(A.2)
The examples of the semi-infinite crack, the penny-shaped crack and the tunnel-crack in mode 1 strongly

suggest that (k,(1;2";x,0)/v/1 — x) is bounded by Cst.Z”" for zZ — 0. Therefore the integrand in the second
term of the right-hand side of Eq. (A.2) is O(1), so that this equation may be rewritten as:

i kni(1;2%5x,0) /'7 kni(1;275x,0)
(2 —z2) A7 = g, (—z S A7+ 0 A3
[t 0= A g A3

The integral in the right-hand side of (A.3) is zero if k,(1;2";x,0) is even with respect to 2, that is for
(n,i) = (2,x), (3,2). On the other hand, if k,;(1;2'"; x, 0) is odd, i.e. for (n,i) = (2,z), (3,x), one gets upon use
of the homogeneity property of k,;(1;2";x,0) and the change of variable 2’ =2/ /(1 — x):

a5 0) g [
S 2 Ad = ku(1/(1 = x);2" 5x/(1 —x),0)2"d2"
/r, V 1—x —n/(1-x)

The k,:(1/(1 —x);2" ;x/(1 — x),0) are the weight functions of the tunnel-crack of width 2/(1 — x) at point
2" when the forces are applied at a distance 1/(1 — x) —x/(1 — x) = 1 from the fore part of the front. Since
when x — 1, this width becomes infinity, the k,;(1/(1 —x);2" ;x/(1 — x),0) behave as the weight functions
of a half-plane crack when the forces are applied at a distance of unity from the front. Using the well-

known expressions of these weight functions (see for instance Gao and Rice (1986)), one then gets for

(n,1) = (2,2), (3,x):
n/(1=x) . 1 4v
lim Ru1/(1 = x)52" /(1= 2), 0)2d2" =y 5

=1 oy n2—v

It follows from these elements that (A.3) finally reads, in the limit x — 1:

o k(132 x,0) O(n) if' (n,i) = (2,x) or (3,2)
lim (2 —2) ——— 2747 = . ) } A4
L E T h@%mFWWWIWM=QQMQﬂ (B4
Combination of Egs. (A.1) and (A.4), in the limit # — 0, finally yields relations (21) and (22).
Appendix B. Calculation of some Fourier transforms
By definition, the symbol FT denoting the Fourier transform:
“+00 » / +00 X ) ZI
FT {PV/ Gz — Z/)f’—A (/Z ) dz/} (p) = lim e'” dz/ gm(z—12) L (/ ) dz
_ z =0 J_ _ z
00 00 00,—1)U(1,+00)
(' =z-7)=1lim - Zun(2")e? dz". / Jx(2) e d7
=0 Joo (oo n)U(n+o0) 7
+00
x g,.(p)PV f“‘—@ew dz (B.1)
z

—00
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Now,
dipPV :o f”z( e dz = / fis(2)ie” dz = if, (p) = PV :c frsT(z)eipZ dz
= i/o f.(q)dg + PV i ﬁsz(z) dz (B.2)
Now, for (r,s) = (2,2) or (3,3), f, is even. Egs. (B.1) and (B.2) then yield:
+oo - Z, ,
FT |:PV/ gmﬂ(z_z,)fz(, )dZ:|<p) mn(p)FrS(.p) (B3)
Fup) = [ f.0)dg (B4)
0
for (r,s) = (2,2), (3,3).
Similarly, for (r,s) = (2,3), Egs. (B.1) and (B.2) yield:
FT| [ =200 0) = 0|1 [ fstwrag s [ B e
LJ -0 0 —00
But [">(f»(z)/z)dz is given by Eq. (17) of Part I. Thus,
[ =~ 2
FT| [ ol = 272020 0) = g0 [P + 52 . (B.5)
- P . 2
Fu(p) = /0 f23(q)dgq +12(1 _Vv) (B.6)

The choice of the additive constant i((2 — v)/(2(1 — v))) in the definition of F; here was made in order to
simplify the differential equations (33)—(38) as much as possible.

Appendix C. Determination of the asymptotic behavior of F;(p), i'33(p), i‘zg,(p), £, (P)s £33(p), &,3(p) for
p—0"

It is assumed that g, (p), &53(p), &»;(p) admit, for p — 0F, expansions involving terms of the form p* In” p
(a, f € N). By Egs. (41) and (42), these expansions read

gn(p) = 1/4+ap*In” p+ O(p’ "' p) (C.1)
gu(p) = —1/4+a;p* " p+ O(p* "' p) (C2)
o . v _

g23(p) = lmp+a4p3 ln/g4p+o(p3 ln[ﬁ 1p) (C3)

The absence of a term of the form p*In” p in g,,(p) here can be checked to be compatible with the dif-
ferential equations (33)—(38).

Inserting these equations into the set of differential equations (33)—(38) and identifying principal terms,
one first gets

52 = :83 - .34 =1 (C-4)
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To next determine the constants a,, as, a4, one must consider the terms proportional to p? in the expansions
of ,,(p) and g;5(p), since the derivatives of both expressions p* In p and p? involve terms of the same order
p. Thus, let us write these expansions in the form

gn(p) = 1/4+ap*Inp + byp’ + O(p’ In* p)

&ulp) =—-1/4+ a;p2 Inp + b3p2 + O(p3 In” p)

Egs. (33)-(35) then yield, account being taken of (39):

2
Fy(p) = —2a,plnp — <2b2 —ay+ - V)p + O(_p2 In’ p) (C.5)
. V2 )
Fs3(p) =2a;plnp + <2b3 a3 T v)p—i— O(p* In" p) (C.6)
Fo(p) =i —i2 2" (ay - a5) P Inp + OGF) ()
A T D R TS R '

Inserting these expressions into (36)—(38), we finally get, after a long but straightforward calculation, by
identifying terms of identical order:

1—2v 1+v i\)(\)2—2\)—1—2)
a» = adr = — ———— A =1

2 4 ) 3 4(1—\1)’ 4 4(1—\))2
Although the introduction of coefficients b,, b3 in the reasoning was necessary for the reason explained

above, they are found to finally cancel out in the calculation, which therefore fails to yield their values.
Egs. (C.1)(C.4) and (C.8) justify Egs. (43)-(45) of the text, and Egs. (C.5)—(C.8) justify Egs. (46)—(48).

(C.8)

Appendix D. Determination of constants f‘;;, i‘;’_ij , f‘;;

Eqgs. (B.2) and (B.4) yield, since f», is an even function:

+00 o3
By = lim Fulp) = lim 2 [ S e
p—Foo 0

p—+00 z

T Sinu

=lim 2 | == falu/p)du = nfa(0)

p——+00 0

It then follows from Eq. (7) of Part I that:

~  2-=73v
F22 _2(2—\)) (Dl)
A similar reasoning for Fi yields:
- 2+
Fy=—— D.2
33 2(2 _ V) ( )

Finally, Egs. (B.2), (B.6) and (17) of Part I yield, since f>; is odd:

+00
Fy = lim F;(p) = — lim Zi/ f23—(z)cospzdz+i
0 z

p—+oo p—+oo

2—v
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Now Riemann-Lebesgue’s theorem, applied to the function (f23(z)/z) (which is regular at z = 0 since f3; is
odd), implies that the limit here is 0. The value of F2°3C follows:

Appendix E. Determination of the asymptotic behavior of f5,(z), f23(2), f33(2), 222(2), £23(z), g33(z) for
T — +00

These asymptotic behaviors can be deduced from those of Fy (p), Fs3(p), Fas(p), &22(p), 83:(p), &2 (p) for
p — 07, Indeed, with regard to g,,(p) for instance, repeated integration by parts of Eq. (51) yields:

gn(z) = {22(])) s1nsz°°_l/0+ 2. Slnpz

T
R COSpZ e & cospz
{ »(p) } _*/ dp
z
1 [. sinpz] "™ 1 too sin pz
=— [g/zlz ) 2 ]O T A £ )T g / &yn(u/z)sinudu  (pz =u)

The bracketed terms here vanish because of the behavior of g,, near 0t and 400 (see Sections 4.2 and 4.4).
Now Eq. (43) implies that for p — 07,

1—2v
2p

&x(p) ~

Insertion of this result into the preceding expression yields:

gn(z) ~ —3 ! for z — +o0

Z
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